top of page

Garden Club Tour Group

Public·409 members

77 (2)mp4


The ARM Mali-G77MP9 is an integrated high-end graphics card for ARM based SoCs (mostly Android based). It was introduced early 2020 in the Mediatek Dimensity 1000 (and 1000+). It integrates 9 of the 16 possible cores and is based on the Valhal architecture. According to ARM it offers improvements in the machine learning efficiency (+60%), a 30% improved performance and a 30% improved efficiency compared to the previous generation (G76).




77 (2)mp4


Download Zip: https://www.google.com/url?q=https%3A%2F%2Fjinyurl.com%2F2uhxMq&sa=D&sntz=1&usg=AOvVaw0ckOOy6rdDPmVWdT-AbMgS



The ARM Mali-G78MP22 is an integrated high-end graphics card for ARM based SoCs (mostly Android based). It was introduced late 2020 in the HiSilicon Kirin 9000E (e.g. Huawei MatePad Pro 12.6). It integrates 22 of the 24 possible cores and is based on the second generation of the Valhal architecture. According to ARM it offers two new features: asynchronous top level and fragment dependency tracking.


From the podium at UN headquarters, he pleaded with heads of state and high-level officials representing nearly all 193 UN Member States to overcome the geopolitical tensions that are holding progress hostage.


The return of in-person diplomacy at UNGA this year also presented opportunities for leaders to gather and push for bigger and bolder climate action. The Secretary-General convened heads of state for a climate roundtable to galvanize action ahead of COP27, which will take place in Egypt in just over a month.


The Biden Administration also used the opportunity to convene world leaders on the margins of UNGA, hosting a Global Food Security Summit to push for a bigger collective response to the global food crisis in order to avert extreme hunger and even famine for hundreds of millions of people around the world. And the U.S. walked the talk, announcing over $2.9 billion in aid to address global food insecurity.


Outside New York, the Administration also hosted the Global Clean Energy Action Forum in Pittsburgh at the end of UNGA 77, shining a light on the unprecedented opportunity to accelerate the clean energy transition, which would help us meet our climate goals while also expanding economic opportunities and bolstering energy security.


Advanced Video Coding (AVC), also referred to as H.264 or MPEG-4 Part 10, is a video compression standard based on block-oriented, motion-compensated coding.[2] It is by far the most commonly used format for the recording, compression, and distribution of video content, used by 91% of video industry developers as of September 2019[update].[3][4] It supports resolutions up to and including 8K UHD.[5][6]


H.264 is perhaps best known as being the most commonly used video encoding format on Blu-ray Discs. It is also widely used by streaming Internet sources, such as videos from Netflix, Hulu, Amazon Prime Video, Vimeo, YouTube, and the iTunes Store, Web software such as the Adobe Flash Player and Microsoft Silverlight, and also various HDTV broadcasts over terrestrial (ATSC, ISDB-T, DVB-T or DVB-T2), cable (DVB-C), and satellite (DVB-S and DVB-S2) systems.


The commercial use of patented H.264 technologies requires the payment of royalties to MPEG LA and other patent owners. MPEG LA has allowed the free use of H.264 technologies for streaming Internet video that is free to end users, and Cisco Systems pays royalties to MPEG LA on behalf of the users of binaries for its open source H.264 encoder.


The H.264 name follows the ITU-T naming convention, where Recommendations are given a letter corresponding to their series and a recommendation number within the series. H.264 is part of "H-Series Recommendations: Audiovisual and multimedia systems". H.264 is further categorized into "H.200-H.499: Infrastructure of audiovisual services" and "H.260-H.279: Coding of moving video".[10] The MPEG-4 AVC name relates to the naming convention in ISO/IEC MPEG, where the standard is part 10 of ISO/IEC 14496, which is the suite of standards known as MPEG-4. The standard was developed jointly in a partnership of VCEG and MPEG, after earlier development work in the ITU-T as a VCEG project called H.26L. It is thus common to refer to the standard with names such as H.264/AVC, AVC/H.264, H.264/MPEG-4 AVC, or MPEG-4/H.264 AVC, to emphasize the common heritage. Occasionally, it is also referred to as "the JVT codec", in reference to the Joint Video Team (JVT) organization that developed it. (Such partnership and multiple naming is not uncommon. For example, the video compression standard known as MPEG-2 also arose from the partnership between MPEG and the ITU-T, where MPEG-2 video is known to the ITU-T community as H.262.[11]) Some software programs (such as VLC media player) internally identify this standard as AVC1.


Throughout the development of the standard, additional messages for containing supplemental enhancement information (SEI) have been developed. SEI messages can contain various types of data that indicate the timing of the video pictures or describe various properties of the coded video or how it can be used or enhanced. SEI messages are also defined that can contain arbitrary user-defined data. SEI messages do not affect the core decoding process, but can indicate how the video is recommended to be post-processed or displayed. Some other high-level properties of the video content are conveyed in video usability information (VUI), such as the indication of the color space for interpretation of the video content. As new color spaces have been developed, such as for high dynamic range and wide color gamut video, additional VUI identifiers have been added to indicate them.


Five other new profiles (see version 7 below) intended primarily for professional applications were then developed, adding extended-gamut color space support, defining additional aspect ratio indicators, defining two additional types of "supplemental enhancement information" (post-filter hint and tone mapping), and deprecating one of the prior FRExt profiles (the High 4:4:4 profile) that industry feedback[by whom?] indicated should have been designed differently.


The next major feature added to the standard was Scalable Video Coding (SVC). Specified in Annex G of H.264/AVC, SVC allows the construction of bitstreams that contain layers of sub-bitstreams that also conform to the standard, including one such bitstream known as the "base layer" that can be decoded by a H.264/AVC codec that does not support SVC. For temporal bitstream scalability (i.e., the presence of a sub-bitstream with a smaller temporal sampling rate than the main bitstream), complete access units are removed from the bitstream when deriving the sub-bitstream. In this case, high-level syntax and inter-prediction reference pictures in the bitstream are constructed accordingly. On the other hand, for spatial and quality bitstream scalability (i.e. the presence of a sub-bitstream with lower spatial resolution/quality than the main bitstream), the NAL (Network Abstraction Layer) is removed from the bitstream when deriving the sub-bitstream. In this case, inter-layer prediction (i.e., the prediction of the higher spatial resolution/quality signal from the data of the lower spatial resolution/quality signal) is typically used for efficient coding. The Scalable Video Coding extensions were completed in November 2007.


The next major feature added to the standard was Multiview Video Coding (MVC). Specified in Annex H of H.264/AVC, MVC enables the construction of bitstreams that represent more than one view of a video scene. An important example of this functionality is stereoscopic 3D video coding. Two profiles were developed in the MVC work: Multiview High profile supports an arbitrary number of views, and Stereo High profile is designed specifically for two-view stereoscopic video. The Multiview Video Coding extensions were completed in November 2009.


Additional extensions were later developed that included 3D video coding with joint coding of depth maps and texture (termed 3D-AVC), multi-resolution frame-compatible (MFC) stereoscopic and 3D-MFC coding, various additional combinations of features, and higher frame sizes and frame rates.


Versions of the H.264/AVC standard include the following completed revisions, corrigenda, and amendments (dates are final approval dates in ITU-T, while final "International Standard" approval dates in ISO/IEC are somewhat different and slightly later in most cases). Each version represents changes relative to the next lower version that is integrated into the text.


To ensure compatibility and problem-free adoption of H.264/AVC, many standards bodies have amended or added to their video-related standards so that users of these standards can employ H.264/AVC. Both the Blu-ray Disc format and the now-discontinued HD DVD format include the H.264/AVC High Profile as one of three mandatory video compression formats. The Digital Video Broadcast project (DVB) approved the use of H.264/AVC for broadcast television in late 2004.


The Advanced Television Systems Committee (ATSC) standards body in the United States approved the use of H.264/AVC for broadcast television in July 2008, although the standard is not yet used for fixed ATSC broadcasts within the United States.[36][37] It has also been approved for use with the more recent ATSC-M/H (Mobile/Handheld) standard, using the AVC and SVC portions of H.264.[38]


H.264/AVC/MPEG-4 Part 10 contains a number of new features that allow it to compress video much more efficiently than older standards and to provide more flexibility for application to a wide variety of network environments. In particular, some such key features include:


Like other ISO/IEC MPEG video standards, H.264/AVC has a reference software implementation that can be freely downloaded.[50] Its main purpose is to give examples of H.264/AVC features, rather than being a useful application per se. Some reference hardware design work has also been conducted in the Moving Picture Experts Group.The above-mentioned aspects include features in all profiles of H.264. A profile for a codec is a set of features of that codec identified to meet a certain set of specifications of intended applications. This means that many of the features listed are not supported in some profiles. Various profiles of H.264/AVC are discussed in next section. 041b061a72


About

Welcome to the group! You can connect with other members, ge...

Members

bottom of page